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Abstract— Realistic multi-agent motion simulations are essen-
tial for the advancement of self-driving algorithms. However,
the majority of existing works tend to overlook the kinematic
realism of the simulated motions. In this paper, we present
SceneDM, a novel consistent diffusion model designed to jointly
generate consistent and realistic motions for all types of agents
within a traffic scene. To employ temporal dependencies and
improve the kinematic realism of the generated motions, we
introduce an innovative constructive noise pattern alongside
smoothing regularization techniques integrated into the frame-
work of the diffusion model. Moreover, the inference procedure
of this model is tailored to effectively ensure local temporal
consistency. Furthermore, a scene-level scoring function is
incorporated to evaluate the safety and road adherence of
the generated agents’ motions, helping to filter out unrealistic
simulations. Through empirical validation in the Waymo Sim
Agents task, we substantiate the effectiveness of SceneDM
in improving the smoothness and realism of generated agent
trajectories. The project webpage is available at https://alperen-
hub.github.io/SceneDM.

I. INTRODUCTION

Traffic simulations complement real-world logged traffic
scenarios, providing an economical and safe way to evaluate
autonomous driving systems before their deployment in the
real world. However, the generation of such scenes is non-
trivial, because of (i) diverse agent types, including vehicles,
pedestrians, bicycles, etc., and their complex interactions; (ii)
the multi-mode nature of the generated scenes.

Several rule-based strategies [1], [2] provide some intuitive
solutions but struggle to provide complex traffic scenes.
Alternatively, recent works resort to deep models to handle
the complexity of traffic scenes. For example, some work
[3]-[5] exploit motion prediction methods to obtain future
trajectories of agents. On the other hand, generative models
are exploited, including Generative Adversarial Nets (GAN)
based methods [6]-[9] and Variational Auto-encoder (VAE)
ones [10], [11]. Besides, a variety of diffusion-based methods
have been proposed recently, such as MID [12], MotionDif-
fuser [13], and CTG [14].

The realism of generated scenarios for simulation is cru-
cial, encompassing both the realistic interactions between
agents and the surrounding environment and the realism
of agent motion. Achieving these two facets depends on
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Fig. 1: High-level demonstration of the proposed SceneDM.

the model’s ability to realize spatial and temporal consis-
tency. Specifically, temporal consistency is manifested in
the continuity and smooth nature of generated trajectories,
whereas spatial consistency is evidenced by agents’ collision
avoidance. Recently, several studies like CTG++ [15] have
leveraged controllable generative models to enhance the
spatial consistency of generated traffic scenes. Nonetheless,
temporal consistency has been largely overlooked, potentially
resulting in unrealistic motions of agents.

To tackle these problems, we propose a novel diffusion
framework, termed SceneDM, for scene-level multi-agent
trajectory generation, as illustrated in Fig. 1. SceneDM gen-
erates realistic and consistent future trajectories for multiple
types of agents based on historical trajectories and map
information.

In particular, in the context of generating locally smooth
agent trajectories akin to those observed in the real world,
we introduce a novel coherent diffusion model. Building
on the observation that noise significantly influences the
pattern of generated images in the image domain [16], we
propose a constructive noise pattern within the diffusion
model. Intuitively, in a smooth motion trajectory, the states of
an agent at adjacent time steps exhibit similarity. To achieve
this, we propose a noise pattern construction strategy to
ensure the similarity of Gaussian noise samples at adjacent
time steps, thereby maintaining the similarity of the states.
Correspondingly, we introduce a smooth regularization to
further enforce the model to produce similar states in the
adjacent time at the training phase. Furthermore, we develop
a temporal-consistent guidance sampling strategy to generate
coherent trajectories once the diffusion model is trained with
the proposed method. In the design of the denoising network,
we employ alternative temporal and spatial attention modules
to capture the spatial and temporal dependencies of future



agent motions.

On the other hand, generative models are confronted with
the issue of unreliability. Due to factors such as model
convergence and generalization, sampled trajectories may
exhibit outliers like going off-road or driving in reverse.
These generated outliers, if utilized for simulating self-
driving algorithms, will exert adverse effects on the algo-
rithm’s performance. Consequently, we introduce a scene-
level scoring function to evaluate the compliance of gener-
ated scenarios with traffic regulations, focusing on collision
avoidance and road adherence. This scoring function serves
to filter out implausible simulations, thereby ensuring the
practicality of the generated samples. The main contributions
of SceneDM are summarized as follows:

« We propose a novel consistent diffusion model for the
joint generation of trajectories for multiple agents within
a traffic scene. In particular, the proposed diffusion
strategy enables the model to improve the temporal
consistency of generated trajectories, leading to a sig-
nificant improvement in their local smoothness.

o We customize a temporal-consistent guidance sampling
procedure to enhance the kinematic realism of agent
trajectories during inference. Besides, we introduce a
scene-level scoring function to select traffic scenarios
that comply with traffic regulations, enhancing both
realism and practicality in simulations.

« We validate the proposed framework in the large-scale
Waymo Open Sim Agents task that consists of real-
world traffic scenarios with complex interactions. The
proposed SceneDM achieves excellent performance,
particularly in terms of kinematic realism.

II. RELATED WORK

We provide an overview of a series of traffic simulation
methods, including heuristic strategies and deep learning-
based methods, as listed in Table I.

Heuristic methods. Early traffic simulation platforms
like Carla [1] commonly employ hand-crafted rules [17]
or heuristic strategies [1] to control the motion of agents.
However, they are insufficient to emulate the complexity and
realism of real-world traffic scenarios.

Motion prediction induced methods. Some recent works
[31, [18], [19] exploit the results of motion prediction tasks to
generate multi-mode traffic scenes. For instance, SimNet [20]
models the vehicle’s driving process as a Markov process
and implements state distribution and transition functions
with deep neural networks. BITS [21] proposes a bi-level
hierarchy model to imitate driving behaviors from real-world
data. TrafficSim [22] formulates a joint actor policy with
an implicit latent variable model and employs GRU and
CNN to learn multi-agent behaviors from real-world data.
Besides, Joint-Multipath++ [23] and Trafficgen [3], derived
from the motion forecasting model Multipath++ [5], utilize
multi-context gating blocks to handle various interactions
in observed data. Furthermore, built upon motion prediction
model MTR [24], [25], MTR_E [19] introduces a collision-
mitigation policy, while CAD [26] groups the agents in a

TABLE I: Comparison of traffic simulation methods.

Simulation Multi-type ~ Multi-mode Temporal Spatial Scenario

Platform/Algorithm Agent Sample Consistency  Consistency  Filtering
Carsim X X X
Carla 4 X v 4 X
TrafficSim X v X 4 X
TrafficGen X v X v X
MTR_E v 4 X 4 X
MTG X (4 X v X
MID X v X X X
CTG X 4 X X v
MotionDiffuser v v X v X
Proposed (4 (4 (4 (4 v

scene and produces trajectories of each group with different
models.

Generative models. Another category of approaches uti-
lizes generative models to learn the probability distribution
of trajectory data and generate new trajectory samples. Some
methods [8], [9] utilize Generative Adversarial Networks
(GANSs) to generate diverse trajectories for traffic agents.
However, GANs may suffer from mode collapse and will
produce unrealistic scenarios [27]. In addition, MTG [10] and
CVAE-H [11] employ VAE to extract representations of his-
torical trajectories of agents and generate future trajectories.
In a more relevant work, MID [12] presents a diffusion-based
framework to formulate pedestrian trajectory prediction. Be-
sides, Scene Diffusion [28] utilizes latent diffusion in an end-
to-end differentiable architecture to generate arrangements
of discrete bounding boxes for agents. CTG [14], [15]
develops a conditional diffusion model for controlled vehicle
trajectory generation, ensuring that the generated trajectories
have desired properties, such as speed limits. However, these
diffusion-based models consider a specific agent type and
overlook the kinematic realism of generated motions.

In contrast with these methods, we propose a consis-
tent diffusion framework to generate trajectories with scene
consistency for various types of agents in the scene. In
particular, we design a novel diffusion strategy to address the
temporal consistency of generated trajectories and improve
the kinematic realism.

I1II. METHOD
A. Notions and Preliminaries

SceneDM aims to generate future trajectories for NV agents
in a given scenario simultaneously, leveraging both the map
information and their historical trajectory data. In this paper,
the current time is denoted as ¢ = 0. The future trajectory
of an agent is represented as s = {yt ceRI|t = 1,2, -
-, T}, where y* is an H-dimensional vector including 3-D
coordinates and heading and T represents the length of the
generated future trajectory.

Diffusion models consist of a diffusion process that grad-
ually transforms a data distribution into unstructured noise
and a reverse process to recover the data distribution [30],
[31]. In this paper, we employ subscripts to indicate the
step in the diffusion process and reverse process, such as
original data s¢ and latent variable si. During the forward
diffusion process, Gaussian noise is gradually added to
the original data sy to obtain latent variable si,---, Sk,
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Fig. 2: The SceneDM framework comprises a scene encoder and a Transformer-based denoising network, depicted in the
yellow and orange blocks, respectively. The denoising network conditions on the agent embedding from the scene encoder to
eliminate noise from the noisy trajectory. During the training of the proposed consistent diffusion model, a new constructive
noise pattern is demonstrated in the blue block. To further enhance the smoothness of generated trajectories, a smoothness
regularization is introduced. During the generating phase, we customize the DDIM [29] algorithm with temporal-consistent
guidance for ensuring temporal consistency, as illustrated in the green block. Finally, a scene-level scoring module helps to
filter out unrealistic generations, enhancing the practicality of the generated samples in the simulation.

where K denotes the maximum number of diffusion steps.
According to DDPM [31], the forward diffusion process is
parameterized as a Markov chain, with the final variable,

Sk = VQaKSo+ (1*5&[{)6, (D)

where a is a positive constant representing the noise
level and e denotes the noise sampled from the standard
Gaussian distribution A/(0,I). When K is sufficiently large,
sk converges to the Gaussian distribution.

Diffusion models provide parameterized Gaussian tran-
sitions to model the reverse process. Given diffusion step
1,---, K and the condition ¢, diffusion models formulate
the reverse process as follows:

K

po (sox | €) =p(sk | ) [[ o (se1 | sk k),
k=1

po (Sk—1 | sk, ¢, k) = N (po (sk, ¢, k), Zg (sg, ¢, k), (3)

where p (si | ¢) = p(sx) = N(0,I) and the 6 indicates
the parameters of the entire framework.

Diffusion models [31] are optimized to approximate
po (Sk—1 | Sk, ¢, k) or equivalently predict the added noise
€ in the diffusion process, in accordance with the objective
function

2

Lpse = IEE,S(J HEQ(Sk,k,C) - EH s

“4)

with eg(sg, k, ¢) representing the predicted noise.

B. Framework

The framework of SceneDM consists of a scene encoder
to learn vectorized representations of dynamic scenarios and
a designed decoder for the reverse diffusion process, as illus-
trated in Fig. 2. The scenario encoder encodes scene elements
such as road networks and agent historical trajectories into a
set of latent embeddings. The embeddings of agents are then
fed into the Transformer-based decoder as the condition in
the reverse process.

We adopt the heterogeneous graph convolutional recurrent
network, proposed in [32], as the scene encoder. Following
[32], each scenario is modeled as a dynamic heterogeneous
graph where different types of nodes, including lane nodes
and agent nodes, represent distinct scene elements and dy-
namic edges capture the evolution of various interactions.
Specifically, lane-lane edges are connected following the
road topology, while agent-agent and agent-lane edges are
dynamically linked according to their distance from agents’
positions at specific time. Categorical embeddings are further
applied to agent nodes to distinguish various types of agents.
Road information and diverse agent features are fused with
the heterogeneous graph convolution jointly yet differently.
The produced d-dimensional embedding for each agent en-



codes its motion characteristics and context information.
Embeddings of all the N agents are indicated with tensor
c € RVxd,

In the design of the decoder, we adopt an attention
mechanism to handle multi-agent interactions and temporal
dependencies of trajectories. The temporal attention enables
the model to learn continuous trajectories over time. Mean-
while, the spatial attention permits the model to capture
agent-agent interactions and generate consistent trajectories,
i.e., without collision. Specifically, we take the alternating
temporal attention layer and spatial attention layers as a basic
module, similarly to [33]. Multiple such modules are stacked
to process the complex interactions in the denoising process.

Specifically, as illustrated in the orange block in Fig. 2,
the condition ¢, which encapsulates distinct motion charac-
teristics and individual context information of all agents, ex-
pands an additional dimension for temporal features through
ID convolution, i.e., ¢ € RV*Txd Meanwhile, for each
diffusion step k, we encode the diffusion step and noisy
variable s through multi-layer perceptrons (MLPs). These
embeddings are concatenated with the condition ¢, resulting
in a fused feature (RV*7*24) To highlight the positional
relationships of the sequence data, we further impose po-
sitional encoding on the fused feature. This feature is then
fed into the transformer that is composed of attention layers
across time and agent alternatively. Finally, an MLP based
on the features of the transformer produces the noise to be
removed.

C. Consistent Diffusion Model

In real-world scenarios, agents exhibit smooth and contin-
uous motion patterns as they navigate through their environ-
ment. Therefore, local smoothness is an important factor in
evaluating the reality of generated trajectories. To address it,
we propose a novel consistent diffusion model to generate
smooth and realistic trajectories by imposing the same noise
on the overlapping parts of adjacent elements.

Diffusion process. As shown in Figure 2, we firstly

augment the trajectory sequence so = [y, y?, - ,yT] to
make adjacent elements have overlapping parts. Specifically,
for each state y* in the trajectory so = [y, 42, -+, yT], we

concatenate it with the state y**1 at the subsequent moment.
By concatenating the states of adjacent frames, we create an
augmented variable gt € R2¥ that incorporates information
from both y* and y*+?!, providing an informative input for
subsequent processing. Most importantly, ¢ overlaps partly
with both *~! and g**!. Correspondingly, we obtain an
augmented sequence of trajectory states, denoted as So =
(g, g%, ,gT~1]. We then gradually add Gaussian noise
to Sp to obtain Sg. To maintain the consistency of the state
information at the same timestamp within the noisy trajectory
Sk, we introduce a constructive noise pattern by applying
the same augmentation approach to the sampled noise.
Specifically, we first sample noise € = [e3, €2, -+ ,ed ]’ €
RT*H from N(0,I). Then €g is shifted and concatenated
to obtain the augmented noise sequence €g € RT~1*2H for

So. In other words,
& =Concat(66,eé+l),t: 1,2,...,T—1, (5)
Sk = VaxSo + /(1 — ax)eéo. (6)
Reverse process. Together with the condition ¢ from
encoder, Sg is passed through the Transformer denoiser to
predict the noise & (Sk, k,c) € RT~1X2H (o be removed.
Similar to DDPM [31], the model is optimized as:

Linse =Ee s, ||€0 — €0(Sk, k,c)||, k=1,2,....K. (7)

Besides, we introduce a regularization to further improve
smoothness. The smoothness is calculated as the difference
between adjacent motion states of the original sequence
data, and equivalently the difference between the front and
rear halves of the element of the augmented sequence. For
example, with the motion state indicating the linear velocity
of the agent, the difference reflects the linear acceleration.
The smoothness loss term regularizes the difference of the
generated samples to approximate that of the ground truth
observed in the real-world. Mathematically,

(eb™t —eb) — (&5,

— €g ~t’f)

€0,k — €0,k

; (8)

Lsmooth = Ee,So,k,t

where we use Ez’f; and Eg”,; to indicate the first and rear part
of each predicted noise €g ;, respectively.

Combining the aforementioned two losses, we define a
novel hybrid optimization objective, Lpyprid Lpse +
ALgmooth- By introducing the smoothness regularization
term, the model is encouraged to generate trajectories that
exhibit realistic and smooth motion patterns. Both parameters
of the scene encoder and the Transformer-based denoiser
are trained simultaneously. The hyperparameter A is used
to adjust the balance between these two losses, with A = 1
adopted in the experiments.

D. Temporal-consistent Guidance Sampling

We present here the temporal-consistent guidance sam-
pling strategy for the consistent diffusion model, generalized
from DDIM. During the generating phase, the same construc-
tive noise pattern as the training phase is adopted. Specif-
ically, we first sample noise sequence from the standard
Gaussian distribution N (0, I) and then perform shifting and
concatenation operations to the sampled noise sequence to
obtain the initial noisy trajectory sequence Sx € RT—1x2H
At each step of the denoising process, the information
corresponding to the same state of the original sequence
data is forced to be consistent, like €g,_kl’r and Eg”j,:, through
averaging them:

& EgT — Mean(&g 1" EgT), t=2.3,....T. (9)
During the sampling process, SceneDM refines and generates
the trajectories by iterative computing transitions from k =
K to k =0 as follows:

Qg1

Sk—1 = Sk ++/1—0ar_1-€o

Qag

(10)




TABLE II: Results on the waymo sim agents benchmark v0. Higher values indicate better performance, with the top two

results indicated in bold and underlined.

\ Meta Kinematic Metric Interactive Metric Map Metric
. Linear Linear Angel  Angel Dist To Time To Dist To N

‘ Realism ‘ Overall Speed  Acc. Speed  Acc. ‘ Overall Object Coll. Coll. Overall Roadedge Offroad
SceneDMF 0.506 0.424 0.432 0.277 0523 0467 0.526 0.368 0.462 0.813 0.606 0.621 0.598
SceneDM 0.500 0.424 0.432 0276  0.523  0.467 0.517 0.365 0.447 0.810 0.596 0.619 0.584
MVTE [34] 0.517 0.420 0.443 0222 0535 0.481 0.529 0.382 0.451 0.832 0.649 0.664 0.641
MVTA [34] 0.509 0.418 0.437 0.220  0.533  0.481 0.519 0.373 0.436 0.830 0.637 0.655 0.629
MTR.E [19] 0.491 0.418 0.428 0.235 0.534 0475 0.491 0.346 0.409 0.798 0.607 0.654 0.584
Joint-Multipath++ [23] 0.489 0.407 0.432 0230 0515 0452 0.499 0.344 0.420 0.813 0.602 0.639 0.583
Wayformer [35] 0.472 0.361 0.408 0.127 0.473 0437 0.494 0.358 0.403 0.810 0.608 0.645 0.589
MTR+++ [19] 0.470 0.360 0412 0.107 0.484 0437 0.493 0.346 0.414 0.797 0.603 0.655 0.577
CAD [26] 0.432 0.336 0.346 0.253 0.433 0311 0.436 0.330 0.311 0.789 0.572 0.638 0.540
QCNeXt [18] 0.392 0.311 0.477 0.242 0325  0.199 0.445 0.376 0.324 0.757 0.443 0.610 0.360
Constant Velocity 0.238 0.047 0.074 0.058 0.019  0.035 0.337 0.208 0.202 0.737 0.368 0.454 0.325

where &y, represent the noise levels at diffusion step k.
By iteratively applying the transitions, the sampling process
gradually removes the noise and generates plausible future
trajectories.

E. Scene-level Scoring Module

Generative models may produce unrealistic scenes or
traffic-rule violation ones, such as agents colliding or going
out of the road boundary. Such data may adversely affect
the subsequent simulation task for autonomous driving. To
address this issue, we propose a scoring module to assess
the generated scenes at a scene-level. It consists of safety
verification and road-adherence measurements. Specifically,
for each generated candidate trajectory s;, we compute its
overlap with the trajectories of other agents in the scene
in parallel and denote the number of collisions as 71 (s;).
Similarly, the road-adherence is measured by r3(s;), which
represents the number of times the agent goes out of the
road boundary. The final trajectory scoring function for s;
is obtained by:

F(SZ) :T1(51)+7‘2($z) (11)

By calculating the average F'(s;) of all the N agents, we
obtain the scenario score. Generated scenarios are ranked
and selected accordingly.

IV. EXPERIMENT AND RESULTS
A. Dataset and Metrics

We use the Waymo Open Motion Dataset in our experi-
ment. In each scenario, there are a maximum of 128 agents,
consisting of three types: vehicles, bicycles, and pedestrians.
The dataset provides the historical trajectory information of
these agents for a duration of 1.1 seconds, including 3D
coordinates, heading, vehicle velocity, agent type, etc. The
sim agents task requires simulating 32 future trajectories for
each agent in the scene, generating their motions for the up-
coming 8-second duration, including the centroid coordinates
and heading of each agent. Unlike motion prediction task
that measures displacement errors, this benchmark evaluates
the distribution similarity between the generated trajectories
and real-world data through kinematic, interactive, and map-
based metrics. These metrics collectively form the meta-
metric realism, as elaborated in [36].

B. Implementation Details

We utilize a scene-centric coordinate system where all
agents within the scene share the same coordinate system.
We take the location of the autonomous vehicle at ¢ = 0
as the origin, and adopt its current driving direction as x-
axis. Instead of directly generating 3D coordinates of agents,
we choose to generate agents’ velocities and integrate them
to generate trajectories. Within the decoder, we perform six
iterations of the attention mechanism, alternating between
the time dimension and the agent dimension. The embedding
dimension in the decoder is set to 512. During the training
phase, the initial learning rate is set to 0.0001 and decreases
with the step decay learning rate scheme. Finally, we denote
the variants of the proposed method, with and without the
Scene-level Scoring Module (introduced in Sec. III E), as
SceneDMF and SceneDM, respectively.

C. Results and Analysis

Quantitative results. We quantitatively compare our
method with a wide range of methods. As shown in Table II,
the proposed models reach a realism meta-metric of 0.506,
and achieve the highest scores in several metrics, such as
the overall kinematic metric. Notably, with velocity as the
motion state, the proposed method realizes smooth states
of generated sequence data with the best linear acceleration
metric. As shown in Table II and III, SceneDMF further
improves the performance by filtering scenarios with the
scoring module, especially in terms of the collision metric.
However, we also observe that SceneDM(F) has potential
for further enhancement, such as improving road network
embedding to better interact with maps.

Qualitative results. In Figure 3, we illustrate the dynamic
generation process of a scenario. The process commences
with the sampling of Gaussian noise when k = 500. During
the denoising process, SceneDM progressively eliminates the
noise and reduces the trajectory uncertainty. It ultimately
converges when k = 0, yielding trajectories that adhere
to the distribution of real-world data. To provide a concise
representation, we randomly select three distinct trajectories
from the set of 32 generated future trajectories for display.
As demonstrated in Figure 3, 1) when the agent goes on the
straight lane, SceneDM captures diverse speed modes and is
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Fig. 3: The qualitative results of the generation process are demonstrated for three samples. Initially, SceneDM samples
noise from a standard Gaussian distribution at k¥ = 500 and progressively eliminates trajectory noise until convergence at

k=0.

TABLE III: Ablation results on 1000 scenarios randomly sampled from the validation set of the waymo motion dataset.

Variants Agent Sequence Noise Smooth Const. Comp. Kinematic Interactive Map Realism
Int. Augm. const. loss guidance filter Metric Metric Metric
Baseline 0.4108 0.5052 0.5899 0.4891
- v 0.4159 0.5161 0.5964 0.4965
- v v 0.3904 0.5047 0.5408 0.4682
- v v v v 0.4209 0.5181 0.5863 0.4963
SceneDM v v v v 0.4243 0.5174 0.5894 0.4982
SceneDMF v v v v v 0.4245 0.5257 0.5959 0.5030

capable of lane changing; 2) On an intersection, SceneDM
generates multi-mode trajectories, including going straight,
turning left, and turning right, efc. 3) For turning trajecto-
ries, SceneDM covers diverse turning radii, consistent with
those in the real world. These observations demonstrate that
SceneDM effectively models the multi-mode characteristics
of the agents and produces smooth and realistic motions.
More qualitative results, like interactions between multiple
types of agents, are further provided on the Project Webpage.

D. Ablation Studies

We further study the different module proposed in this
paper. We randomly sampled 1,000 scenarios from the val-
idation set to conduct ablation experiments. As shown in
Table III, the baseline model, which is composed of just
temporal attention layers and ablates the proposed consis-
tent training and sampling, performs strongly but degrades
significantly compared with the proposed SceneDM. With
agent-wise self-attention layers introduced into the denoiser
architecture, the performance is enhanced, especially in terms
of the interactive metric. Merely augmenting sequence data
does not improve performance. However, when combined
with the proposed constructive noise pattern and smooth

regularization, performance is significantly improved. For
instance, the kinematic metric is enhanced from 0.3904 to
0.4209, and further to 0.4243 with the temporal-consistent
guidance sampling. These demonstrate that maintaining tem-
poral consistency within the noisy trajectory enhances the
model’s ability to learn short-term temporal dependencies
and generate smooth trajectories. Finally, with the scene-level
scoring module, SceneDMF achieves increment in terms
of both interactive and map-based metrics, indicating the
improvement on the traffic rule compliance.

V. CONCLUSION

In this paper, we propose a diffusion based multi-agent
trajectory generation framework, called SceneDM, to jointly
produce coherent motions of various types of agents in a
traffic scene. In particular, we design an effective consistent
diffusion model through introducing a novel constructive
noise pattern coupled with smooth regularization techniques
into DDPM. Furthermore, we customize the fast sampling al-
gorithm DDIM with the proposed temporal-consistent guid-
ance. These designs permit the model to effectively capture
the temporal consistency of generated trajectories, resulting
in smooth and realistic motion patterns. Furthermore,



we propose a plug-and-play scene-level evaluation module
to enhance spatial consistency and road adherence of the
generated scenarios. SceneDM achieves excellent perfor-
mance, especially in terms of kinematic realism, in the
challenging waymo sim agents task. In the future, it is worth
exploring controllable generation, for example generating
safety-critical traffic scenarios.
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